Spatial & Temporal Distribution of Clouds as Observed by MODIS onboard the Terra and Aqua Satellites

Michael D. King,¹ Steven Platnick,² Paul A. Hubanks,² W. Paul Menzel,³ and Steven A. Ackerman³

¹LASP, University of Colorado

²NASA Goddard Space Flight Center

³University of Wisconsin-Madison

- > MODIS atmosphere products
 - Examples from Aqua
 - ✓ Cloud fraction
 - Cloud top properties
 - Cloud optical & microphysical properties
 - Probability density functions
 - ✓ Marginal
 - ✓ Joint
- > Status and plans
 - Collection 5.1
 - Collection 6

Gridded Level-3 Joint Atmosphere Products (M. D. King, S. Platnick, P. A. Hubanks - NASA GSFC)

- > Daily, 8-day, and monthly products (97, 255, 255 MB)
 - 20-25% of the size of these products in Collection 4
 - Files contain more SDSs, but are stored with internal hdf compression
- > 1° 1° equal angle grid
- > Statistics
 - Mean, standard deviation, minimum, maximum
 - QA mean, QA standard deviation
 - Cloud fraction, pixel counts
 - Log mean, log standard deviation (useful for cloud inhomogeneity studies)
 - Mean uncertainty, QA mean uncertainty
 - Marginal probability density functions for cloud properties
 - √ Histogram counts, confidence histograms
 - Joint probability density functions
 - ✓ Joint histograms between various cloud properties (e.g., cloud optical thickness vs cloud top pressure)

Monthly Mean Cloud Fraction (S. A. Ackerman, R. A. Frey et al. - Univ. Wisconsin)

Aqua/MODIS

- Cloud fraction similar during day and night (in Collection 5)
 - High cloud amount
 - ✓ Roaring 40s
 - ✓ ITCZ
 - ✓ North Atlantic
 - ✓ Indonesia and western tropical Pacific
 - Low cloud amount
 - ✓ Subtropical gyres over the ocean
 - ✓ Deserts
 - ✓ Antarctica
 - ✓ Greenland

Zonal Mean Cloud Fraction (S. A. Ackerman, R. A. Frey et al. - Univ. Wisconsin)

Time Series of Cloud Fraction during the Daytime (M. D. King, S. Platnick et al. - NASA GSFC)

Aqua Cloud Fraction - Terra Cloud Fraction (M. D. King, S. Platnick et al. - NASA GSFC)

- > Terra
 - Higher over oceans than land
 - ✓ Marine stratocumulus
- > Aqua
 - Higher over land than ocean
 - √ Interior continents
 - ✓ Desert southwestern US
 - ✓ Australia
 - Higher over ocean than land
 - ✓ Northern Indian Ocean

Zonal Mean Cloud Fraction by Phase (M. D. King, S. Platnick et al. - NASA GSFC)

Zonal Mean Cloud Fraction by Phase (M. D. King, S. Platnick et al. - NASA GSFC)

Aqua Cloud Fraction - Terra Cloud Fraction (M. D. King, S. Platnick et al. - NASA GSFC)

July 2006

- Liquid Water Clouds
 - Terra
 - ✓ Greater over oceans
 - ✓ Greater over northern Amazonia
- > Ice Clouds
 - Aqua
 - ✓ Greater over continents
 - √ Greater over ITCZ
- Aqua shows more ice clouds, especially over land
- Terra shows more liquid clouds, especially over ocean

Monthly Mean Cloud Fraction by Phase (M. D. King, S. Platnick et al. - NASA GSFC)

July 2006 Aqua

- Liquid water clouds
 - Marine stratocumulus regions
 - ✓ Angola/Namibia
 - ✓ Peru/Ecuador
 - √ California/Mexico
- > Ice clouds
 - Tropics
 - ✓ Indonesia & western tropical Pacific
 - ✓ ITCZ
 - Roaring 40s

Monthly Mean Cloud Top Properties (W. P. Menzel, R. A. Frey et al. - Univ. Wisconsin)

Aqua/MODIS

- Cloud top pressure and temperature low (high clouds)
 - ITCZ
 - Deserts
 - India and China land
 - Western tropical Pacific
 - Northern Indian Ocean
 - Greenland
 - Antarctica
- Cloud top pressure and temperature high (low clouds)
 - Central ocean gyres
 - Southern Indian Ocean
 - Western Europe

Zonal Mean Cloud Top Pressure (W. P. Menzel, R. A. Frey et al. - Univ. Wisconsin)

Monthly Mean Cloud Optical Thickness (M. D. King, S. Platnick et al. - NASA GSFC)

July 2006 Aqua (QA Mean)

- > Liquid water clouds
 - Marine stratocumulus $\tau_c \sim 15$
 - Higher optical thickness over land than ocean
 - √ Cloud optical thickness ~5
 in Indian Ocean
 - High optical thickness around roaring 40s
- > Ice clouds
 - Larger in tropics (ITCZ)
 - High where deep convection occurs
 - ✓ Congo basin
 - ✓ Amazon basin
 - High optical thickness around roaring 40s
 - Higher over land than ocean

Monthly Mean Cloud Effective Radius (M. D. King, S. Platnick et al. - NASA GSFC)

July 2006 Aqua (QA Mean)

- > Liquid water clouds
 - Larger drops in SH than NH
 - Larger drops over ocean than land
 - Due to cloud condensation nuclei (aerosols)
- > Ice clouds
 - Larger in tropics than high latitudes
 - ✓ Anvils
 - Small ice crystals at top of deep convection

Zonal Mean Cloud Effective Radius (M. D. King, S. Platnick et al. - NASA GSFC)

Marginal Histograms of Cloud Optical Thickness South Atlantic Ocean

Terra March 30 -April 6, 2005

Marginal Histograms of Cloud Effective Radius South Atlantic Ocean

2x bin width

MODIS τ_c vs r_e Joint Histograms Liquid Water Clouds over Ocean

32° -40° N, 117° -125° W June 2005

ISCCP-like τ_c vs p_c Joint Histograms

50° N-50° S Terra August 2001

MODIS τ_c vs p_c Joint Histograms Ice Clouds

50° N-50° S Terra August 2001

MODIS τ_c vs p_c Joint Histograms Liquid Water Clouds

50° N-50° S Terra August 2001

Status and Plans for Collection 6

- > Terra and Aqua
 - MODIS atmosphere products (descriptions, level-1b and level-3 browse imagery, documentation, contact information, tools for working with and ordering data...)
 - √ modis-atmos.gsfc.nasa.gov
 - Data available for browse (level-1 and atmosphere level-2 and level-3) and ordering at Level 1 and Atmosphere Archive and Distribution System (LAADS)
 - ✓ <u>ladsweb.nascom.nasa.gov</u>
- > Plans for the future
 - Collection 5.1 enhancements and reprocessing
 - Atmosphere reprocessing of Aqua to begin on May 21, 2008 (beginning of Aqua around July 4, 2002 to August 2007) and complete in September 21, 2008
 - Atmosphere reprocessing of Terra to begin on September 16, 2008 (beginning of Terra around February 24, 2000 to August 2007) and complete in February 2009
 - » To include Deep Blue aerosol algorithm
 - Collection 6 enhancements and processing
 - Atmosphere initial delivery of code in November 2008 for initial testing
 - Atmosphere processing of Terra and Aqua to begin in February 2009